

Northeastern Indiana Regional Coordinating Council

Table of Contents

Introduction I
Traffic Surveillance 3
Vehicle Miles of Travel 9
Intersection and Arterial Analysis 17
Corridor Studies 25
Corridor and Impact Analysis Studies: Adams Center Road 27
Corridor Protection Plans: US 24 (Fort to Port) 33
Corridor Protection Plans: Airport Expressway 39
Travel Time and Delay Studies 49
Travel Time and Delay Summary Section. 53
Transportation Improvement Program 69
Safety Management Crash Report 77
Bicycle and Pedestrian Planning 83
Summary 87

Figures

Figure 1: Traffic Count Links 3
Figure 2 : Traffic Count Locations 4
Figure 3 : Traffic Volumes 5
Figure 4 : VMT by Road Class 9
Figure 5 : VMT 1995-2005 Bar chart 10
Figure 6 : 1986, 1995, 2005 Annual Average Weekday VMT Pie Charts 11
Figure 7: 1986 and 2005 Annual Average Weekday VMT Comparison for Passenger Vehicles and Trucks 12
Figure 8 : 1986 and 2005 Annual Average Weekday VMT Comparison of Vehicle Type by Road Classification 13
Figure 9 : Completed Intersection Counts 17
Figure 10: Fiscal Year 2006 Intersections Counted Table 18
Figure 11: Fiscal Year 2006 Intersections North Bound Approach Level of Service 19

Figures
Figure 12: Fiscal Year 2006 Intersections South Bound Approach
Level of Service__19
Figure 13: Fiscal Year 2006 Intersections West Bound Approach
Level of Service___ 20
Figure 14: Fiscal Year 2006 Intersections East Bound Approach Level of Service 20
Figure 15: Fiscal Year 2006 Intersections Signal Warrants 21
Figure 16: Completed Corridor Studies 25
Figure 17: Fiscal Year 2006 Corridor Studies 26
Figure 18: Adams Center Road Corridor and Impact Analysis Traffic Volumes 28
Figure 19: Adams Center Road Corridor and Impact Analysis Scenario 1 29
Figure 20: Adams Center Road Corridor and Impact Analysis Scenario 2 30
Figure 21: Adams Center Road Corridor and Impact Analysis Scenario 3 31
Figure 22: US 24 (Fort to Port) Corridor Interchange Protection Plan Study Area 34, 35
Figure 23: US 24 (Fort to Port) Corridor Interchange Protection Plan Interchange Recommendations at Bruick / Ryan Road 36
Figure 24: US 24 (Fort to Port) Corridor Interchange Protection Plan Interchange Recommendations at Webster Road 37
Figure 25: US 24 (Fort to Port) Corridor Interchange Protection Plan Interchange Recommendations at State Road 101 38
Figure 26: Airport Expressway Corridor Protection Plan Study Area 40, 41
Figure 27: Airport Expressway Corridor Protection Plan Smith Road Access Recommendations 42
Figure 28: Airport Expressway Corridor Protection Plan Coverdale Road Access Recommendations 43
Figure 29: Airport Expressway Corridor Protection Plan Branstrator Road Access Recommendations 44
Figure 30: Airport Expressway Corridor Protection Plan Lower Huntington / Ernst Road Access Recommendations 45
Figure 31: Completed Travel Time and Delay Studies 49
Figure 32: Fiscal Year 2006 Travel Time and Delay Studies 50
Figure 33: Fiscal Year 2006 Travel Time and Delay Studies Summary Sections 52
Figure 34: Fiscal Year 2006 Travel Time and Delay Studies Summary Sections: Winchester Road Northbound 54
Figure 35: Fiscal Year 2006 Travel Time and Delay Studies Summary Sections: Winchester Road Southbound 55

Figures

Figure 36: Fiscal Year 2006 Travel Time and Delay StudiesSummary Sections: Oxford / Moeller Road Westbound56
Figure 37: Fiscal Year 2006 Travel Time and Delay Studies Summary Sections: Oxford / Moeller Road Eastbound 57
Figure 38: Fiscal Year 2006 Travel Time and Delay Studies Summary Sections: Jefferson Boulevard / Maumee Avenue / SR 930 / Washington Boulevard Northbound 58
Figure 39: Fiscal Year 2006 Travel Time and Delay Studies Summary Sections: Jefferson Boulevard / Maumee Avenue / SR 930 / Washington Boulevard Southbound 59
Figure 40: Fiscal Year 2006 Travel Time and Delay Studies
Summary Sections: Clinton Street / Tonkel Road Northbound 60
Figure 41: Fiscal Year 2006 Travel Time and Delay Studies Summary Sections: Clinton Street / Tonkel Road Southbound 61
Figure 42: Fiscal Year 2006 Travel Time and Delay Studies Summary Sections: Coldwater Road Northbound 62
Figure 43: Fiscal Year 2006 Travel Time and Delay Studies Summary Sections: Coldwater Road Southbound 63
Figure 44: Travel Time and Delay Studies Utilizing GPS Technology Coldwater Road Northbound 64
Figure 45: Travel Time and Delay Studies Utilizing GPS Technology Coldwater Road Southbound 65
Figure 46: Local TIP Projects FY 07-09 69
Figure 47: Example of Locally Funded Project 70
Figure 48: Example of Federally Funded Project 70
Figure 49: 2005 High Crash Locations 77
Figure 50: Breakdown of Crash Types at the Washington Center Road / Dartmouth Drive Intersection 78
Figure 51: Before Improvements at the Washington Center Road / Dartmouth Drive Intersection 79
Figure 52: After Improvements at the Washington Center Road / Dartmouth Drive Intersection 79
Figure 53: Bicycle Pedestrian Transportation Plan 84
Figure 54: Bicycle Pedestrian Route Design Classifications 85
Figure 55: Example of Bike Path 85
Figure 56: Example of Bike Lane 85
Figure 57: Example of a Wide Curb Lane 86
Figure 58: Example of Shoulder Bike Lanes 86
Figure 59: Bicycle Pedestrian Transportation Plan - Detailed 86

INTRODUCTION

The Northeastern Indiana Regional Coordinating Council (NIRCC) is designated as the metropolitan planning organization (MPO) responsible for conducting transportation planning in the Fort Wayne-New Haven-Allen County Metropolitan Planning Area. Working with other public and private agencies, NIRCC strives to implement a transportation system that assures healthy growth and orderly development in the region. One of the main goals of NIRCC is working to develop a well-coordinated, functional transportation system to satisfy existing and future travel demands.

NIRCC and its staff work to provide a complete transportation system, one which will enhance the efficient movement of goods and people, while promoting greater safety and maintaining a conscious regard for the quality of life. For this goal to become a reality, constant monitoring of the existing system must occur. Staff is continually collecting data on the existing system to support the short-range planning process and to identify the challenges and opportunities of the future.

This Transportation Summary Report highlights and visually illustrates some of the transportation planning activities conducted and the products produced by NIRCC during Fiscal Year 2006. Included in this report is a summary of the traffic surveillance activities, intersection and arterial analyses, corridor and impact studies, travel time and delay studies; Fiscal Year 2007-2009 Transportation Improvement Program (TIP) Projects for the Fort Wayne-New Haven-Allen County Metropolitan Planning Area, Safety Management System (SMS) activities, and bicycle/pedestrian planning activities. The primary purpose of this report is to familiarize the reader with the techniques used by NIRCC and the resulting products to promote a better understanding of the transportation planning process in our community.

Traffic Surveillance

Studies completed by the Northeastern Indiana Regional Coordinating Council

Transportation Summary Report Fiscal Year 2006

TRAFFIC SURVEILLANCE

Traffic counting provides an important base for short- and long-range transportation planning in an area. NIRCC is responsible for collecting and recording traffic count data for more than 2,000 traffic count links, as illustrated in Figure 1. The data is collected on a rotational basis, which varies from link to link. NIRCC employs three types of counts, weekly, temporary ground counts, and classification counts.

The first type of counts are weekly counts. These are done at eight permanent local counting stations, also illustrated in Figure 1. The permanent weekly counts are in locations that represent arterials and collectors in four different planning areas of Fort Wayne and Allen County. The Indiana Department of Transportation maintains permanent counting stations on Interstate 69 and State Road 930. The data from these stations, collected each month, is used to

Figure 1

develop monthly count factors. Monthly count factors are important to determine because traffic volumes vary from one season to another for various reasons. Weather conditions, construction, economic activities and school/work schedules are just a few of the variables that cause seasonal variations in traffic flow. Traffic count data collected in

Figure 2

November may be very different than traffic count data collected in July. Because of these differences, traffic counts throughout the year must be adjusted with these factors depending on the month and season if they are to be accurately compared. These factors are what adjust the raw traffic count data into the Average Annual Daily Traffic (AADT) volumes.

The second type of counts are temporary ground counts. In Count Year 2005 (April - December), data was collected at 741 locations, as illustrated in Figure 2. These counts are forty-eight hour, weekday counts that are conducted regionwide and adjusted for vehicle axle variability and seasonal variability. These counts fulfill three main objectives:

1) sample locations to estimate vehicle miles of travel, 2) sample highway performance monitoring system locations, and 3) collect coverage and special counts for planning and analysis purposes.

The last type of traffic counts are traffic classifications. Classification counts are conducted at selected locations to determine the frequency of various vehicle types. This data is collected and summarized, then recorded as a component of the transportation characteristic file. The amount of truck traffic at a sampled location is the critical information collected by classification counts. The information is used for general system monitoring and for augmenting the data needs of Highway Performance Monitoring System (HPMS) sections and several management systems.

Figure 3 provides the range of traffic volumes present throughout Allen County. Some of the traffic count links shown in Figure 1 and Figure 3 exhibit links that may look unconnected or isolated. These links appear this way because they

Figure 3
are usually part of the local road type samples or the railroad inventory count locations. Since most of the links are not functionally classified, they do not illustrate the continuity that the other links reveal.

Vehicle Miles of Travel

Studies completed by the Northeastern Indiana Regional Coordinating Council

VEHICLE MILES OF TRAVEL

The purpose of the vehicle miles of travel (VMT) estimate is to provide a measurement of regional traffic growth. The VMT estimate incorporates several factors that influence quality of travel within a region including traffic volume, length and type of roadway facility, seasonal traffic variations, and vehicle types. The VMT estimate has been published annually for the region beginning in Fiscal Year 1986. With each annual estimate, NIRCC staff has attempted to improve its sampling and analytical skills to produce the most reliable estimate possible. Region-wide, vehicle miles of travel increased from $7,137,764$ million in 2004 to $7,331,828$ million in 2005. This represents an increase of 2.72 percent. The VMT decreased on expressways (2.78\%), increased on arterial streets (2.79\%), and increased on collector streets (3.02\%) from 2004. The VMT is illustrated for 2005 in Figure 4.

Figure 4

Vehicle Miles of Travel by Road Class

Passenger Vehicles \& Trucks

The changes in VMT from year to year can be attributed to a number of possibilities. The most evident reason for VMT changes can be accredited to the increase or decrease in the amount of travel. Other factors that can affect the increase or decrease in VMT can include the price of gasoline, unemployment rates, automobile operating costs, and weather.

The bar chart shown in Figure 5 displays the annual VMT estimates for the ten year time period spanning from 1995 to 2005 for the Fort Wayne-New Haven-Allen County Metropolitan Planning Area. It also provides a bench mark for VMT displaying the first estimate done in 1986. These VMT estimates don’t include the number of vehicle miles traveled on the local streets. The amount of local samples NIRCC collects is not sufficient to calculate a reliable VMT estimate. With some exceptions, the general trend shown on the chart shows an increasing total VMT throughout the ten year period as well as a significant increase since the inception of VMT in 1986. The VMT is anticipated to continue to grow, in part by an increase in automobile ownership per family, the spread of development, suburb to suburb travel, a rise in the percentage of two-income families, and other lifestyle changes.

Figure 5

Vehicle Miles of Travel 1995-2005

Figure 6 presents three pie charts that represent the proportions of VMT by street classification for the years 1986, 1995, and 2005. As you can see, the proportions of traffic in 1986 are very similar to the proportions of traffic in 1995. The proportions change from 1995 to 2005. Freeway traffic increased significantly while Arterial usage decreased. The main reason for these changes can be attributed to the opening of Interstate 469. The first year that Interstate 469 was included in the VMT estimates was in 1996. The addition of Interstate 469 caused a large shift of traffic from the arterial streets to the new freeway system.

Figure 6

1986 Annual Average weekday VMT

2005 Annual Average weekday VMT

1995 Annual Average weekday VMT

The VMT is also broken down to show the annual average VMT for passenger vehicles and trucks. The pie charts contained in Figure 7 illustrate the VMT for 1986 and 2005. The proportion of truck traffic compared to passenger vehicle traffic is almost identical in 1986 and 2005. A further breakdown of the proportionate usage of passenger vehicles versus trucks on the different road classifications shows some interesting differences between 1986 and 2005. Even though the proportion of truck traffic compared to passenger vehicle traffic is the same for these two years the distribution of traffic on arterials and freeways are much different. Just as previously mentioned, the traffic distributions between arterials and freeways changed significantly when Interstate 469 was included into the VMT estimates. The most significant change in traffic distribution between 1986 and 2005 came from the Annual Average weekday VMT totals for trucks. The pie charts show how much of an impact Interstate 469 has made between 1986 and 2005. The utilization of the freeway system has alleviated a significant amount of truck traffic from the arterials.

The pie charts contained in Figure 8 illustrate the proportion of passenger vehicle traffic versus truck traffic for each type of road classification. Even though the amounts of truck traffic and passenger vehicle traffic significantly changed

for some of the road classifications, the proportions of passenger vehicles and trucks for each road classification remained very similar between 1986 and 2005.

Freeways
Percentage of 1986 Annual Average weekday VMT for Passenger Vehicles compared to Trucks

Expressways
Percentage of 1986 Annual Average weekday VMT for Passenger Vehicles compared to Trucks

Arterials
Percentage of 1986 Annual Average weekday VMT for Passenger Vehicles compared to Trucks

Percentage of 1986 Annual Average weekday VMT for Passenger Vehicles compared to Trucks

Figure 8

Freewavs

Percentage of 2005 Annual Average weekday VMT for Passenger Vehicles compared to Trucks

Percentage of 2005 Annual Average weekday VMT for Passenger Vehicles compared to Trucks

Arterials

Percentage of 2005 Annual Average weekday VMT for Passenger Vehicles compared to Trucks

Percentage of 2005 Annual Average weekday VMT for Passenger Vehicles compared to Trucks

Intersection and Arterial Analysis

Studies completed by the Northeastern Indiana Regional Coordinating Council

INTERSECTION AND ARTERIAL ANALYSIS

NIRCC also conducts intersection and arterial analysis. Staff studies intersections within Allen County for their performance characteristics. These studies are conducted based on requests from the City of Fort Wayne, the City of New Haven, the Allen County Highway Department, and the Indiana Department of Transportation to evaluate problems and concerns with specific intersections. Figure 9 illustrates all the intersections that have been studied by NIRCC in the past.

Figure 9

In fiscal year 2006, NIRCC evaluated 41 intersections which are listed in the table contained in Figure 10. Out of these 41 intersections, 22 were signalized and 19 were unsignalized.

Figure 10

Signalized Intersections	Unsignalized Intersections	Unsignalized All-way Stops
Adams Ctr Rd / Moeller Rd	Adams Ctr Rd / Paulding Rd	Ardmore Ave / N Washington Blvd
Airport Expressway / Baer Rd	Adams Ctr Rd / Seiler Rd	Covington Rd / South Bend Dr
Airport Expressway / Bluffton Rd	Adams Ctr Rd / Tillman Rd	Hartzell Rd / Moeller Rd
Airport Expressway / Fairfield Ave	Butler Rd / Hillegas Rd	Maplecrest Rd / Monarch Dr
Airport Expressway / Lwr Huntington Rd	Clinton St / Wallen Rd	St Joe Ctr Rd / Wheelock Rd
Airport Expressway / Winchester Rd	Coldwater Rd / Till Rd	
Anthony Blvd / Creighton Ave	Georgetown N Blvd / Maplecrest Rd	
Anthony Blvd / McKinnie Ave	Halter Rd / St Joe Rd	
Anthony Blvd / Oxford St	Lake Ave / Maplecrest Rd	
Anthony Blvd / Pettit Ave	Linden Rd / Rose Ave	
Anthony Blvd / Pontiac St	Maplecrest Rd / Vance Ave	
Anthony Blvd / Rudisill Ave	Rothman Rd / Wheelock Rd	
Anthony Blvd / Wayne Trace	St Joe Rd / Wheelock Rd	
Barr St / Jefferson Blvd	Stellhorn Rd / Wheelock Rd	
Barr St / Washington Blvd		
Calhoun St / Paulding Rd		
Clinton St / Coldwater Rd		
Hillegas Rd / Independence Rd		
Maplecrest Rd / St Joe Rd		
Mayhew Rd / St Joe Rd		
Paulding Rd / US 27		
State Blvd / Wells St		

Some intersections where analyzed in order to track their performance by comparing them with past intersection studies or gathering the data for further comparisons in the future. Others where analyzed as part of other transportation studies such as corridor analyses or signal timing studies.

Intersections along Anthony Boulevard and Airport expressway were evaluated for signal coordination as part of the Intersection and Arterial Analysis project for the Congestion Management Air Quality program. The proposed improvements for this project would provide the City of Fort Wayne the funding to obtain and install the equipment needed to interconnect the signals along each corridor. This would reduce vehicle emissions by decreasing delay at each intersection.

The targeted measures of effectiveness for intersections are delay and capacity. The level of service (LOS) of an intersection is defined alphabetically A through F, A being the best LOS and F being the worst. The LOS is based on the average delay (measured in seconds) experienced at an intersection. Level of service cannot be calculated when the volume to capacity ratio (V/C) exceeds 1.2 for an individual group. The level of service for each of the intersections counted in Fiscal Year 2006 are illustrated in Figures 11 through 14 for each approach. These levels of service are only based on the peak hour for each intersection.

Figure 11

Figure 12
FY 06 Intersection Counts
Levels of Service SB Approach

* These levels of service are only based on the peak hour for each intersection.

Figure 13
FY 06 Intersection Counts Levels of Service WB Approach

Figure 14
FY 06 Intersection Counts
Levels of Service EB Approach

* These levels of service are only based on the peak hour for each intersection.

In order to qualify for a traffic signal, intersections must meet one or more of the primary volume signal warrants or both all-way stop warrants as described in the Manual on Uniform Traffic Control Devices 2003 Edition. The intersections reviewed for signal warrants along with other types of intersection analyses in Fiscal Year 2006 are illustrated in Figure 15.

Figure 15

Corridor Studies

Studies completed by the Northeastern Indiana Regional Coordinating Council

Transportation Summary Report Fiscal Year 2006

CORRIDOR STUDIES

Another activity conducted by NIRCC is the study of corridors throughout Allen County. There are two types of studies that are used to evaluate different aspects of the corridors: corridor and impact analysis studies, and corridor protection studies and plans. Figure 16 illustrates the corridor studies that have been completed by NIRCC.

The main purpose of a corridor and impact analysis is to evaluate traffic impacts of future developments on an existing corridor, as well as locations that are in need of current or future infrastructure improvements. The corridor analysis estimates the number of new trips from anticipated developments that will be added to an existing facility to examine the changes of service level. When service levels fall below acceptable levels, recommendations are tested to accommodate

Figure 16

future traffic and relieve anticipated congestion problems along the corridor. Information provided by a corridor and impact analysis helps in developing a corridor protection plan that can be an efficient tool for mitigating potential congestion.

Corridor protection studies and plans evaluate and identify optimal access points along corridors for future developments and improvements. The adoptions of these plans facilitate efforts to resolve existing congestion and mitigate future problems. The recommendations from the plans aid local officials, planners, and developers during future development by protecting the integrity of the corridor from detrimental access.

In Fiscal Year 2006, NIRCC completed a corridor and impact analyis study for Adams Center Road and two corridor protection studies and plans, one for the US 24 (Fort to Port) Corridor and one for Airport Expressway. Figure 17 illustrates the corridor studies that were completed in Fiscal Year 2006. These studies are detailed in the following sections of Corridor Studies called Corridor and Impact Analysis Studies and Corridor Protection Studies and Plans.

Figure 17

Corridor and Impact Analysis Studies

Adams Center Road Corridor and Impact Analysis

Corridor and Impact Analysis Studies Adams Center Road Corridor and Impact Analysis

A corridor and impact analysis study was completed for the Adams Center Road Corridor in Fiscal Year 2006. The intersections were analyzed using Synchro 6. The analyses were performed for three different levels of land use development including existing conditions, phase I developments, and phase II developments. Phase I focuses on proposed/approved land use developments and phase II focuses on potential developments on currently vacant land within the defined study area. Phase I has a one to five year horizon, while phase II has a five to ten year horizon. In phase II, vacant land is reviewed for development potential, and likely future developments are assessed. The future developments are based upon surrounding land uses, current zoning, community desires, and staff knowledge of development activity. Various maps, aerial photos, and field surveys assisted in reviewing the three phases of land use developments. For the phase I and phase II future analyses, projected traffic from future developments was forecasted from the ITE Trip Generation Manual 7th edition. The number of trips was based upon the size and type of each development. After determining the number of trips from each residential or commercial development, the trips were distributed and assigned to the adjacent roads and intersections along the corridor based upon logic and existing travel distribution patterns.

Special attention was paid to the number of trips from multiple commercial developments to exclude internal trips and adjust for pass-by trips, to obtain net new trips. After trip generation, trip distribution and traffic assignment, trips from future developments were added to existing trips. Based upon the distribution patterns, turning volumes for each of the major intersections were established for both phase I and phase II scenarios. The new traffic volumes were used to perform intersection analyses for the phase I and phase II development schemes. When intersection analyses indicated

level-of-service (LOS) bellow "D", geometric improvement recommendations were developed or were analyzed using Synchro 6. The program was used to optimize existing traffic signal phasing and to analyze potential signalization of currently unsignalized intersections.

The following scenarios were examined for the Adams Center Road Corridor.
$>$ Scenario 1: Existing Traffic Volumes (Figure 18) and Conditions (Figure 19)
$>$ Scenario 2: Existing volumes and traffic generated by the proposed developments (Phase I) (Figure 20)
$>$ Scenario 3: Existing volumes, traffic generated by the proposed developments (Phase I) and traffic generated by the areas with a potential for development (Phase II) (Figure 21)

Conclusions

The corridor analysis indicates that the following improvements are recommended to efficiently accommodate the increase travel demand from planned and potential development along the Adams Center Road corridor for each Scenario.

Figure 19

Scenario 1 - Existing Conditions

With the existing conditions along the Adams Center Road corridor it is currently operating at acceptable levels. There are no recommendations for improvements included in this scenario.

Scenario 2 - Proposed Development Recommendations

With the additional trips generated from proposed developments for phase I, the following improvements can be made to allow the corridor to operate at acceptable levels.

Figure 20

1. The Adams Center Road and State Road 930 intersection can be improved to acceptable levels with the addition of two exclusive left turn lanes for the northbound movement.
2. The Adams Center Road and Seiler Road intersection can be improved to acceptable levels with signalization.
3. The Adams Center Road and Paulding Road intersection can be improved to acceptable levels with signalization and the installation of exclusive left turn lanes on all approaches.
4. The Adams Center Road and Tillman Road intersection can be improved to acceptable levels with signalization.

Scenario 3 - Potential Development Recommendations

With the additional trips generated from proposed developments for phase II and the connection of Maplecrest Road with Adams Center Road at the intersection of State Road 930, the following improvements can be made to allow the corridor to operate at acceptable levels.

1. The Adams Center Road and Seiler Road intersection can be improved to acceptable levels with the addition of a southbound exclusive left turn lane.
2. Levels of service for the Adams Center Road and Paulding Road intersection can be improved with the addition of exclusive right turn lanes on all approaches.
3. The Adams Center Road and Tillman Road intersection can be improved to acceptable levels with the addition of exclusive left turn lanes on the east and west approaches and an exclusive right turn lane for southbound and westbound approaches.

Figure 21

Cooridor Protection Studies and Plans US 24 (Fort to Port) Corridor Interchange Protection Plan

Corridor Protection Studies and Plans

US 24 (Fort to Port) Corridor Interchange Protection Plan

A corridor protection study and plan was completed for the interchanges along the US 24 (Fort to Port) Corridor (still under design) in Fiscal Year 2006. The new alignment of this corridor will have a freeway design, therefore the only access to the roadway will be at the three (3) interchanges onto US 24: Ryan Road, Webster Road, and State Road 101. The major focus was to protect these interchanges in order to provide sufficient room for traffic to safely and efficiently enter and exit US 24. This new roadway will generate development near and along its route, specifically at the interchanges. The roads above were studied and recommendations were made, based upon the most current plans and alignments for the roadway, which are subject to change. In addition, the information gathered was passed on to land use planners to

Figure 22

assist them as development along this corridor begins. These recommendations should serve as guidance and/ or policy during the development, construction, and post-construction of the US 24 project. Figure 22 illustrates the entire US 24 (Fort to Port) Corridor that was studied. The next three pages contain the recommendations made for the areas surrounding the US 24 interchanges along this corridor. Recommendations are subject to engineering review and adjustments as needed. All accesses and developable land will have the following general recommendations:

- Full Accesses to be a minimum of 1000 ' from interchange ramp intersections
- Opposing access where appropriate
- Encouragement of interconnection of developments by way of streets and sidewalks, when and where appropriate
- Corner cuts where appropriate
- Accesses to meet Access Standards Manual requirements

US 24 (Fort to Port) Corridor Interchange Protection Plan Interchange Recommendations at Bruick Road / Ryan Road:

The following recommendations refer to the area around the interchange at Bruick Road and Ryan Road with the future US 24 alignment. Figure 23 illustrates the recomendations at this interchange.

- Access to properties north of US 24 will off of "Old" US 24, preferably at least 1000 feet away from the intersection with Bruick Road and off of Bruick Road at least 1000 feet away from the intersection with "Old" US 24
- "Old" US 24 will be redirected north of its current location to allow appropriate room for the interchange
- No access off of Ryan Road south of US 24 between the interchange and Bremer Road, all access to properties between US 24 and Bremer Road to be off of Bremer Road at least 1000 feet away from the intersection with Ryan Road
- Bremer Road will be cul-de-saced east of Ryan Road

Figure 23

Figure 24

US 24 (Fort to Port) Corridor Interchange Protection Plan Interchange Recommendations at Webster Road:

The following recommendations refer to the area around the interchange at Webster Road and the future US 24 alignment. Figure 24 illustrates the recomendations at this interchange.

- Access off of Webster Road north of US 24 to be at least 1000 feet away from the US 24 interchange
- Webster Road south of Woodburn Road will be redirected to create a common intersection with Woodburn Road and Webster Road north of Woodburn Road. Existing Webster Road will be redirected to T into the new alignment of Webster Road and Woodburn Road west of the new intersection will be cul-de-saced.
- No access off of Webster Road south of US 24 between the interchange and Slusher Road, all access to properties between US 24 and Slusher Road to be off of Slusher Road at least 1000 feet away from the intersection with Webster Road

US 24 (Fort to Port) Corridor Interchange Protection Plan Interchange Recommendations at State Road 101:

The following recommendations refer to the area around the interchange at State Road 101 and the future US 24 alignment. Figure 25 illustrates the recomendations at this interchange.

- Access off of State Road 101 north of US 24 to be at least 1000 feet away from the US 24 interchange
- No access off of State Road 101 south of US 24 between the interchange and Maumee Center Road, all access to properties between US 24 and Maumee Center Road to be off of Maumee Center Road at least 1000 feet away from the intersection with State Road 101

Figure 25

Cooridor Protection Studies and Plans Airport Expressway Corridor Protection Plan

Corridor Protection Studies and Plans Airport Expressway Corridor Protection Plan

A corridor protection study and plan was completed for the Airport Expressway Corridor in Fiscal Year 2006. The Airport Expressway Corridor from Smith Road to Interstate 69 is a "limited access roadway", which means there will be no additional direct access off of Airport Expressway. However, the access locations along the roadways that connect to Airport Expressway play a vital role in the protection of this corridor. The roadways that connect to Airport Expressway (Smith Road, Coverdale Road, Branstrator Road, and Lower Huntington Road / Ernst Road) were studied and access recommendations were made.

Figure 26

Figure 26 illustrates the Airport Expressway Corridor that was studied. The following pages contain access recommendations for the roads that intersect and are adjacent to the Airport Expressway corridor from Smith Road to Interstate 69. Recommendations are subject to engineering review and adjustments as needed. All accesses and developable land will have the following general recommendations:

- Encouragement of interconnection of developments by way of streets and sidewalks, when and where appropriate
- Accesses to meet Access Standards Manual requirements
- Corner cuts where appropriate

Airport Expressway Corridor Protection Plan Smith Road Access Recommendations:

The Smith Road Access Recommendations are illustrated in Figure 27.

- Due to the current proximity to Airport Expressway, Dalman Road should be redirected north to be directly across from the entrance of CocaCola
- No access north of Airport Expressway between Dalman Road and Airport Expressway, all access to properties west of Smith Road between Dalman Road and Airport Expressway will be off of Dalman Road, preferably at least 1000 feet away from the intersection with Smith Road
- Dalman Road will be cul-de-saced at the existing intersection and redirected to the new alignment to create a 90 degree intersection.
- No access south of Airport Expressway to the east (Fort Wayne International Airport property)
- Access south of Airport Expressway to the west will be at least 1000 feet away from the intersection with Airport Expressway

Figure 27

Airport Expressway Corridor Protection Plan Coverdale Road Access Recommendations:

TheCoverdale Road Access Recommendations are illustrated in Figure 28.

- Access north of Airport Expressway to the east and west will be at least 1000 feet away from the intersection with Airport Expressway directly across from each other
- Access south of Airport Expressway to the east should be at the existing access that is approximately 800 feet south of the intersection with Airport Expressway due to the bridge structure that is approximately 900 feet south of the intersection with Airport Expressway
- Access south of Airport Expressway to the west will be at least 1000 feet away from the intersection with Airport Expressway

Figure 28

Airport Expressway Corridor Protection Plan Branstrator Road Access Recommendations:

TheBranstrator Road Access Recommendations are illustrated in Figure 29.

- Access north of Airport Expressway to the east and west will be at least 1000 feet away from the intersection with Airport Expressway directly across from each other
- Access south of Airport Expressway to the east and west will be at least 1000 feet away from the intersection with Airport Expressway directly across from each other, access to the west must provide access easement to serve the properties to the west and the north

Figure 29

Airport Expressway Corridor Protection Plan Lower Huntington Road / Ernst Road Access Recommendations:

TheLower Huntington Road / Ernst Road Access Recommendations are illustrated in Figure 30.

- Access north of Airport Expressway to the east will be at least 1000 feet away from the intersection with Airport Expressway
- No access north of Airport Expressway to the west off of Lower Huntington Road, all accesses will be off of Old Lower Huntington Road
- Access south of Airport Expressway to the east directly across from the intersection with "Old" Ernst Road to the west
- Access south of Airport Expressway to the west will be off of "Old" Ernst Road or at least 1000 feet south of the intersection with Airport Expressway

Figure 30

Travel Time and Delay Studies

Studies completed by the Northeastern Indiana Regional Coordinating Council

TRAVEL TIME \& DELAY STUDIES

Another activity conducted by NIRCC is the travel time and delay studies. Figure 31 illustrates the travel time and delay studies that have been completed since Fiscal Year 1996. Travel time is one method to measure the congestion in the transportation system. It is essential for proper evaluation of the system because time is one of the most compelling and accurate yardsticks of the efficiency of street and highway service. Travel time is defined as the total time for a vehicle to complete a designated trip over a section of the road or from a specific origin to a specific destination. The studies conducted by NIRCC use the "average speed" method to obtain the travel time and delay data.

The following lists some of the uses that travel time data provide.

- Identification of problem locations on facilities by virtue of high travel times and delay.
- Measurement of arterial level of service.
- Input into transportation planning models.
- Evaluations of route improvements.
- Input to economic analysis of transportation alternatives.

Figure 31

NIRCC staff studied five (5) corridors during Fiscal Year 2006 including: Winchester Road / Bluffton Road from Brooklyn Avenue to Interstate 469, Oxford Street / Moeller Road from Lafayette Street to Minnich Road, Jefferson Boulevard / Maumee Avenue / SR 930 / Washington Boulevard from Calhoun Street to Doyle Road, Clinton Street / Tonkel Road from Dunwood Drive to Union Chapel Road, Coldwater Road from Lima Road to Twin Eagle Drive. The travel time studies completed during Fiscal Year 2006 are illustrated in Figure 32 below.

Figure 32

In order to get average travel times for a corridor, six runs are completed in each direction for three different time periods, morning peak travel (AM peak), evening peak travel (PM peak), and daytime travel (OFF peak). Traffic count information for each link in a corridor is examined to determine the peak hours.

The following pages present a summary of the five corridors studied in fiscal year 2006. Sections from each corridor have been selected for a closer look at average speeds and times. Figure 33 illustrates which sections of each corridor were selected for the summaries. The Winchester Road summary section is from Bluffton Road to Ferguson Road. The Oxford Street / Moeller Road summary section is from Hanna Street to Adams Center Road. The Jefferson Boulevard / Maumee Avenue / SR 930 / Washington Boulevard summary section is from Anthony Boulevard to Minnich Rd. The Clinton Street / Tonkel Road summary section is from Coldwater Road to Auburn Road. The Coldwater Road summary section is from Washington Center Road to Dupont Road. The summaries are illustrated in the bar charts and line graphs contained in Figures 34 through 43.

The summaries display the two most important types of data collected from the travel time studies. Each time period shows a bar chart displaying the average time that NIRCC staff actually encountered from the beginning of the summary section to the end of the summary section. This actual time that was encountered is shown in blue on the bar chart. Each bar chart also displays what the travel time would take if there were no delay along the summary section in red. This time is reflective to what a person would experience if he or she were able to travel along this particular section at the posted speed limit without having to stop for traffic control devices or traffic congestion.

Along with the bar charts for each time period there are also line graphs that display the average speed between each controlled intersection. The yellow lines with red circles illustrate what the posted speeds through each section are. The red lines with yellow circles indicate the average speeds that NIRCC staff actually encountered for each section.

Most of the line graphs portray the observed speed (average speeds that NIRCC staff actually encountered) as being slower than the posted speeds along the corridor. However, there are some instances that you may notice that NIRCC staff actually traveled at a faster speed than what was posted. The reason they would travel above the posted speed is because of the "average speed" method, as mentioned above, used to complete the travel time studies. For this method the driver travels at a speed that, in his or her opinion, is representative of the traffic at every point and time.

Figure 33
Completed Travelliimes

Travel Time and Delay Summary Section Charts for Fiscal Year 2006

Figure 34

Winchester Road Section
 Northbound

Actual Travel Time vs. Travel with no Delay at the Posted Speed Limit

\square Travel Time

\square Travel at Posted Speed Time

- Travel Time
 - Travel at Posted Speed Time

Actual Travel Time vs. Travel with no Delay at the
Posted Speed Limit

\because Observed Speed $\quad \sim$ Posted Speed

Figure 35

Winchester Road Section
 Southbound

Actual Travel Time vs. Travel with no Delay at the Posted Speed Limit

$\square \rightarrow$ Observed Speed $\quad \sim$ Posted Speed

Actual Travel Time vs. Travel with no Delay at the

- Travel Time \quad Travel at Posted Speed Time

Actual Travel Time vs. Travel with no Delay at the

Figure 36

Oxford Street / Moeller Road Section
 Westbound

Average Observed Speed vs. Posted Speed

AM peak Westbound

Figure 37

Oxford Street / Moeller Road Section
 Eastbound

Average Observed Speed vs. Posted Speed

\because Observed Speed $\quad \sim$ Posted Speed

Average Observed Speed vs. Posted Speed

Average Observed Speed vs. Posted Speed

Actual Travel Time vs. Travel with no Delay at the Posted Speed Limit

Actual Travel Time vs. Travel with no Delay at the Posted Speed Limit

- Travel Time
- Travel at Posted Speed Time

Actual Travel Time vs. Travel with no Delay at the Posted Speed Limit

Figure 38

Jefferson Boulevard / Maumee Avenue / SR 930 / Washington Boulevard Section Westbound

\square Travel Time - Travel at Posted Speed Time

Average Observed Speed vs. Posted Speed

Average Observed Speed vs. Posted Speed

OFF peak Westbound

PM peak Westbound

Figure 39

Jefferson Boulevard / Maumee Avenue / SR 930 / Washington Boulevard Section Eastbound

Actual Travel Time vs. Travel with no Delay at the Posted Speed Limit

- Travel Time \quad Travel at Posted Speed Time

Actual Travel Time vs. Travel with no Delay at the Posted Speed Limit

OFF peak Eastbound

```
# Travel Time - Travel at Posted Speed Time
```

Actual Travel Time vs. Travel with no Delay at the Posted Speed Limit

Figure 40

Clinton Street / Tonkel Road Section Northbound

Average Observed Speed vs. Posted Speed

AM peak Northbound

```
- Travel Time
``` - Travel at Posted Speed Time

Actual Travel Time vs. Travel with no Delay at the Posted Speed Limit

\section*{Figure 41}

\section*{Clinton Street / Tonkel Road Section \\ Southbound}

Average Observed Speed vs. Posted Speed

- Observed Speed
\(\longrightarrow\) Posted Speed

Average Observed Speed vs. Posted Speed

OFF peak Southbound
- Posted Speed

Average Observed Speed vs. Posted Speed

Actual Travel Time vs. Travel with no Delay at the Posted Speed Limit

Actual Travel Time vs. Travel with no Delay at the Posted Speed Limit

Actual Travel Time vs. Travel with no Delay at the Posted Speed Limit

\section*{Figure 42}

\section*{Coldwater Road Section \\ Northbound}

Average Observed Speed vs. Posted Speed

Actual Travel Time vs. Travel with no Delay at the Posted Speed Limit

\section*{Figure 43}

\section*{Coldwater Road Section \\ Southbound}

Average Observed Speed vs. Posted Speed

Actual Travel Time vs. Travel with no Delay at the Posted Speed Limit

Actual Travel Time vs. Travel with no Delay at the Posted Speed Limit

\footnotetext{
- Travel Time - Travel at Posted Speed Time
}

Average Observed Speed vs. Posted Speed

Actual Travel Time vs. Travel with no Delay at the Posted Speed Limit

In fiscal year 2007, NIRCC will begin using GPS (Global Positioning System) technology to conduct travel time and delay studies. Figures 44 and 45 show an example of information gathered utilizing a GPS unit for travel time and delay studies. Practice OFF peak runs were completed with the new software and collection method to compare data already collected utilizing the old software and collection method for the Coldwater Road travel time to check for accuracy and data collection problems. The GPS software computes travel times by recording latitude and longitude coordinates

\section*{Figure 44}

Coldwater Rd Northbound during an Off Peak Study

every second during the travel time. The software takes this data and computes speed and time and allows the data to be exported to create maps of the travel time. These maps shown Figures 44 and 45 represent a thematic view of the differences between the posted speed and the actual speed that was experienced during the travel time. The green and yellow shades along Coldwater Road give you an idea about areas that experienced some, little, or no delay while the orange and red shaded areas demonstrate much slower speeds than what was posted.

\title{
Transportation Improvement Program
}

Studies completed by the Northeastern Indiana Regional Coordinating Council

\section*{TRANSPORTATION IMPROVEMENT PROGRAM (TIP) PROJECTS}

NIRCC prepared the Fiscal Year 2007-2009 Transportation Improvement Program. NIRCC has published a Transportation Improvement Program each year since 1977. The TIP is a multi-year capital improvements program documenting highway and transit projects, which will serve the needs of the Fort Wayne-New Haven-Allen County Metropolitan Planning Area. The TIP is updated yearly and is used to guide the expenditure of federal funds in our area. Short range and long range (2030) transportation plans including the Indiana Department of Transportation’s Capital Improvements Program are used to formulate the TIP. The TIP includes commitments of the City of Fort Wayne, Fort

Figure 46

Wayne Public Transportation Corporation, City of New Haven, and Allen County to utilize and match federal funds. The Indiana Department of Transportation projects listed in the TIP represents commitments that the State makes to improve the transportation system in the Metropolitan Planning Area.

Each project typically goes through three different phases before construction completion. These phases include preliminary engineering (PE), right-of-way engineering and acquisition (RW), and construction (CN).

Figure 47

The preliminary engineering includes development of construction plans. Right-of-way engineering and acquisition includes the determination and actual purchase of the right-of-way needed for the project. The construction stage is the actual construction of the project. Each of the projects listed will go through one or more of the phases during the threeyear period.

\section*{Figure 48}

Figure 46 shows the locations of local TIP projects throughout the Metropolitan Planning Area. The local TIP map identifies projects that fit into two different categories. The projects that are colored yellow identify projects that utilize only local funds whether it is City of Fort Wayne or Allen County. The projects colored red identify projects that utilize matching local funds with federal aid funds. Figures 47 and 48 provide aerial views to show examples of a locally funded project and a project utilizing federal aid. The next pages provide a listing of projects for each fiscal year and the phase for each project. Highway projects are listed on pages 71 through 72, and transit funding is listed on pages 73 through 74.

\section*{FY 07 TIP Local Highway Projects}

\section*{ROAD PROJECTS-AREA OVER 200,000 \\ PROJECTS FUNDED WITH STP (33C) - MG - EB}
\begin{tabular}{lc}
Project & Phase \\
Aboite Ctr Rd - Coventry Ln to Jefferson Blvd & RW \\
Auburn Rd - Cook Rd to Clinton St & PE \\
Auburn Rd - Cook Rd to Clinton St & RW \\
Bass Rd - Hillegas Rd to Hadley Rd & PE \\
Carroll Rd - Corbin Rd to . 5 mi w/o Corbin Rd & PE \\
Flutter Rd - Schwartz Rd to Maplecrest Rd & PE \\
Gump Rd - SR 3 to Coldwater Rd & PE \\
Maplecrest Rd - Lave Ave to SR 930 & RW \\
Maysville/Stellhorn Rd - Koester to Maplecrest Rd & PE \\
Moeller Rd - Green Rd to Hartzell Rd & PE \\
Spring St Bridge over NS Railroad & PE \\
Spring St Bridge over NS Railroad & RW \\
St. Joe Center Rd - Reed Rd to Maplecrest Rd & PE \\
St. Joe Center Rd - St. Joe Rd to Reed Rd & CN \\
State Blvd - Cass St to Spy Run Ave & PE \\
Wayne Trace - Pontiac St to Oxford Ave & RW
\end{tabular}

HIGH PRIORITY PROJECT FUNDS
Maplecrest Rd - Parrott Rd to SR 930
CN
CONGESTION MITIGATION AIR QUALITY (CMAQ)
Marketing / Education (Gas Can Exchange Program) CN
Getz Rd/W Jefferson Blvd/Covington Rd CN
IPFW Pedestrian Bridge over St Joseph River CN

HAZARD ELIMINATION SAFETY FUNDS (HES)
Dartmouth Dr \& Washington Center Rd

\section*{HIGHWAY SAFETY IMPROVEMENT PROGRAM (HSIP)}

Dartmouth Dr \& Washington Center Rd

PROJECTS FUNDED WITH STP (33E)
Coverdale Rd - Indianapolis Rd to Airport Exp PE
RW
CN

RECREATION TRAILS PROGRAM (RTP)
Towpath Trail- Rockhill Park to Ardmore/Taylor Int.
CN

\section*{FY 08 TIP Local Highway Projects}
\left.\begin{tabular}{lc}
\multicolumn{2}{c}{ ROAD PROJECTS-AREA OVER 200,000 } \\
PROJECTS FUNDED WITH STP (33C) - MG - EB
\end{tabular}\(\right]\)

\section*{FY 09 TIP Local Highway Projects}
\begin{tabular}{lc}
\multicolumn{2}{c}{ ROAD PROJECTS-AREA OVER 200,000 } \\
\multicolumn{2}{c}{ PROJECTS FUNDED WITH STP (33C) - MG - EB }
\end{tabular} Phase

\section*{FY 07-09 TIP Local Highway Projects}

\section*{ROAD PROJECTS-AREA OVER 200,000 PROJECTS FUNDED WITH LOCAL FUNDS}

\section*{Project}

Amber Rd - US 24 West to Liberty Mills Rd CN
Anthony Blvd - Fairfax ave to Capital Ave CN
\(\begin{array}{ll}\text { Ardmore Ave - Jefferson Blvd to Taylor St } & \text { CN }\end{array}\)
Auburn Rd - Dupont Rd to Pion Rd CN
Bass Rd \& Hadley Rd Intersection
Bass Rd \& Kroemer Rd Intersection
Bass Rd \& Scott Rd Intersection
Butler Rd \& Hillegas Rd Intersection
Clinton St/Leo Rd \& Mayhew Rd Intersection
Cook Rd \& Huguenard Rd Intersection
Illinois Rd - Interstate 69 to Getz Rd
Jefferson Blvd - Illinois Rd to Railroad Viaduct
Union Chapel Rd \& Leo Rd/SR 1 Intersection

Phase
```CN
```

CN
CN
CN
CN
CN
CN

CN CN

Federal Transit Administration
 Section 5307 / Section 5309 / Section 3037 (JARC) - Funds Fort Wayne Public Transportation Corporation

FY 2007

Capital Equipment Purchases (Section 5307 Funds)

Other Maintenance Equipment
AVL Communications Capital and Subscription Costs
Bus Shelters, Street Furniture, and Signage
Northside Satellite Terminal
Six (6) Buses Standard (low floor) 35'
Four (4) Buses Standard (low floor) 40' -partial funding-
Capital Equipment Purchases (Section 5309 Funds) ${ }^{1}$
Downtown Streetscape/Bus Stop Improvements
Hybrid Option for Six (6) Buses (funds requested)
Hybrid Option for Four (4) Buses (funds requested)
Previously Approved Funding Projects
CMAQ - Transit Awareness
CMAQ - Fare Free Ozone Alert Days
CMAQ - Additional Peak Hour Service (1/2 Hour Peak Hour Service)
CMAQ - Biodiesel Alternative Fuel Cost Differential
JARC - Job Access Reverse Commute
Operating Funds and Preventative Maintenance Expenses
Capitalization of Maintenance Costs (Section 5307) ${ }^{2}$
Complimentary Paratransit Costs (Section 5307) ${ }^{2}$

Capital Equipment Purchases (Section 5307 Funds)

Five (5) Minibuses (body on chassis)
AVL/Communication Subscription Cost
Other Maintenance Equipment
Previously Approved Funding Projects
CMAQ - Transit Awareness
CMAQ - Fare Free Ozone Alert Days
CMAQ - Additional Peak Hour Service (1/2 Hour Peak Hour Service)
CMAQ - Biodiesel Alternative Fuel Cost Differential
Operating Funds and Preventative Maintenance Expenses
Capitalization of Maintenance Costs (Section 5307) ${ }^{2}$
Complimentary Paratransit Costs (Section 5307) ${ }^{2}$
${ }^{1}$ Capital purchase listed for informational purposes only
${ }^{2}$ Local match provided from property taxes in Operating Budget
${ }^{3}$ Capitalization of Maintenance Costs and Complementary Paratransit Costs

Capital Equipment Purchases (Section 5307 Funds)
Fourteen (14) Heavy Duty Buses
AVL/Communication Subscription Cost
Other Maintenance Equipment
Capital Equipment Purchases (Section 5309 Funds)
Hybrid Option for Fourteen (14) Buses (funds requested)
Operating Funds and Preventative Maintenance Expenses
Capitalization of Maintenance Costs (Section 5307) ${ }^{2}$
Complimentary Paratransit Costs (Section 5307) ${ }^{2}$
${ }^{1}$ Capital purchase listed for informational purposes only
${ }^{2}$ Local match provided from property taxes in Operating Budget
${ }^{3}$ Capitalization of Maintenance Costs and Complementary Paratransit Costs

Federal Transit Administration
 Section 5310 Funds
 FY 2007
 2006 Funding Cycle

1. Allen County Council on Aging

Low Floor Mini-Van
2. Community Transportation Network

Medium Transit Vehicle
3. Turnstone Center

Medium Transit Vehicle

Safety Management System

Studies completed by the Northeastern Indiana Regional Coordinating Council

Transportation Summary Report Fiscal Year 2006

SAFETY MANAGEMENT SYSTEM

NIRCC also maintains a Safety Management System (SMS) for the entire Allen County Area. A SMS is a systematic process that has the goal of reducing the number and severity of traffic accidents by ensuring that all opportunities to improve safety (i.e. highway planning, design, construction, maintenance, and operation) are identified, considered, implemented where appropriate, and evaluated.

NIRCC maintains a database that contains the crash records from three of the area law enforcement agencies: the Indiana State Police, the Allen County Sheriffs Department, and the New Haven Police Department. The City of Fort Wayne maintains their own crash records database which are not currently included in the NIRCC database. They do however provide NIRCC with a yearly top ten list of crash locations.

The database provides a useful working tool for staff to accurately answer citizen concerns and review the most current crash records to determine whether safety issues are present and to help find solutions to reduce the potential for crashes. The database enables staff to identify high crash locations utilizing rate per million vehicles (RMV) and frequency. Figure 49 illustrates the 2005 High Crash Locations, please note that the crashes reported to the Fort Wayne Police Department are not reflected.

The RMV is calculated using a methodology found in the Manual of Traffic Engineering Studies, Forth

Edition, 1976. Under this
Figure 49
methodology, the total annual number of crashes multiplied by $1,000,000$ is divided by the volume or AADT of the
intersection multiplied by 365 days of the year. This represents the likely number of accidents that will occur at a given location, per one million vehicles. A RMV of 2.0 or higher indicates further analysis is warranted.

Federal Highway Administration (FHWA) funds are made available to correct hazardous locations in each state. NIRCC staff reviews crash locations in the region to determine whether any of the crash locations would be considered for Hazard Elimination Safety (HES) funds. The crash history at these locations is examined to gain a better understanding of the problems that may be contributing to crashes. Staff focuses on the number of crashes, type of crashes, RMV, number of personal injury crashes vs. property damage crashes, and overall ranking of location in the county.

During the 2006 fiscal year, staff applied for HES funds for improvements at the intersection of Washington Center Road and Dartmouth Drive. The funds were requested due to a three-year average RMV of 2.26. An analysis found that 55% of the crashes were rear-end crashes. Figure 50 contains a pie chart that provides a breakdown of the crash types at the intersection. The funds will be used to improve the intersection by adding dedicated left turn lanes on Washington Center Road to improve both the safety and efficiency of the intersection. Figure 51 and 52 illustrate the intersection layout before and after improvements. The City of Fort Wayne identified the project and INDOT approved the HES funds for the improvement. It is anticipated that the improvements at this intersection will begin in 2007.

Figure 50

Breakdown of Crash Types at the Washington Center Rd / Dartmouth Dr intersection

Figure 51

Before Improvements

Figure 52
After Improvements

Bicycle and Pedestian Planning

Studies completed by the Northeastern Indiana Regional Coordinating Council

Transportation Summary Report Fiscal Year 2006

BICYCLE AND PEDESTRIAN PLANNING

Northeastern Indiana Regional Bicycle and Pedestrian Forum

The need and desire for bicycle and pedestrian facilities has dramatically increased over recent years. The four county region represented by NIRCC has many individuals and organizations advocating improvements to the existing bicyclepedestrian transportation system as well as expanding the system in the future. The Fort Wayne, New Haven and Allen County area has been at the forefront for local advocacy groups to begin their planning efforts. Local government has began taking a more active role in their planning efforts to include bicycle and pedestrian amenities.

To better coordinate local efforts, NIRCC sponsored the Northeastern Indiana Regional Bicycle and Pedestrian Forum which represents a task force comprised of governmental parks, planning and highway agencies, advocacy groups, and special project organizations. This forum began meeting monthly in May of 2002. During the fiscal year 2005 however, the forum did not meet monthly, but instead continued to meet when needed for updates, comments, and discussion purposes.

One of the goals of the Forum was to develop a bicycle-pedestrian transportation plan for the region. The Forum began this effort early in calendar year 2003 by focusing on the region's rural areas. By the end of fiscal year 2004 the Forum nearly completed the planning process for the rural areas of Allen County along with planning the connectivity with surrounding counties such as Adams, Dekalb, and Wells. The Forum also completed most of the planning for areas within the more urbanized study area. The concept was to develop a planning tool for planners and highway officials by identifying a prioritized set of routes based on an analysis of significant destinations within the region. These routes will then be recommended for enhancement and protection. During fiscal year 2005 the Bicycle and Pedestrian Transportation Plan was completed and included in the 2030 Long Range Transportation Plan. Staff continued to update the plan in fiscal year 2006. The current version of the Bicycle and Pedestrian Transportation Plan is illustrated in Figure 53, and shown in closer detail in Figure 59. The plan is also available on the NIRCC website at www.nircc.com.

Planning

There were several steps involved in the planning process for identifying routes to be protected or enhanced with bicycle treatment. The first step was to create a database of maps and information. The second step was to locate population centers, towns, cities, and various points of interest. Third, a set of desire lines were created showing the interconnections of these population centers, towns, cities, and various points of interest throughout the region. Step four included analyzing and selecting routes along the desire lines that would be suitable for bicycling. For step five a

Figure 53

Bicycle-Pedestrian Transportation Plan

classification system was created for the selected routes. The final step six was to provide a policy statement for sidewalk and bicycle parking facilities.

Design Classifications for Routes

Once the prioritization process was complete the Forum began assigning a classification system from the Proposed Allen County Road Specifications and Standards 2004 manual and the AASHTO guide for designing the selected set of routes on the bicycle-pedestrian transportation plan. This classification system will give planners and highway officials design standards to follow as they coordinate them with present and future road projects. By mapping out these design classifications the bicycle-pedestrian transportation plan will be assured of having the appropriate continuity throughout the prioritized route system.

Figure 54

The design classifications for this plan are shown in Figure 54 and described as follows:

Bike Path (Class I): A separate paved multipurpose trail for the principal use of bicycles and other non-motorized modes. Bike paths are 10 feet wide except in high usage areas where they should be 12 feet wide. (example pictured in Figure 55)

Bike Lane (Class II): A portion of the road that is designated by pavement striping for exclusive bicycle use. Bicycle lanes may be signed as part of a directional route system. Bicycle lanes are five feet wide on a curbed road and minimum four feet wide as a shoulder bike lane. (example pictured in Figure 56)

Example of a Bicycle Lane

Wide Curb Lane (Class III): A road that provides a widened paved outer curb lane to accommodate bicycles in the same lane as motor vehicles. Lane width shall be increased to at least 14 feet. (example pictured in Figure 57)

Shoulder: A lane contiguous to the traveled way but separated by a stripe. Most common in rural areas. Typically shared with pedestrians and occasional emergency vehicle access. (example pictured in Figure 58)

Shared Roadway: All roads not categorized above where bicycles share the roadway

Example of Shoulder Bike Lanes

Detailed look at the Bicycle-Pedestrian Transportation Plan
Figure 59

SUMMARY

The Transportation Summary Report provides an overview of some of the transportation planning activities performed by the Northeastern Indiana Regional Coordinating Council (NIRCC) during Fiscal Year 2006. The Summary Report has highlights a majority of the transportation planning activities conducted and the products produced by NIRCC during Fiscal Year 2006. The document provides a basic overview of the transportation planning activities, data and products produced as part of the transportation planning process. Various types of traffic data integral to the planning process are collected and processed. Traffic volume and classification data are two examples of this basic information. The vehicle miles of travel provides a mechanism for assessing travel demand growth within the region.

Traffic studies help monitor the transportation system, identify problem areas and assist in the development of viable solutions. Crash analyses, intersection analyses and different types of corridor studies serve to improve safety and efficiency. Through a cooperative and coordinated process the Cities of Fort Wayne and New Haven, Allen County, Citilink and State of Indiana review the information and recommend improvements. The multimodal nature of the planning process includes public transit, para-transit, bicycle and pedestrian travel. The projects listed in the Fiscal Year 2007-2009 Transportation Improvement Program (TIP) represent the improvements selected for implementation.

The staff of the Northeastern Indiana Regional Coordinating Council will continue to monitor the transportation system striving to provide a complete transportation system. A system that enhances efficiency, promotes safety, and maintains a conscious regard for the quality of life. For this goal to become a reality, constant monitoring of the existing system must occur. Staff is continually collecting data on the existing system to support the short-range planning process and to identify the challenges and opportunities of the future.

The primary purpose of this report is to familiarize the readers with the techniques used by NIRCC and the resulting products to promote a more functional transportation process in our community. However, this report only provides a summary of the wide variety of activities conducted by NIRCC and its staff. NIRCC is constantly striving to provide relevant information to the public and communities it serves to support a decision-making process that improves the transportation system.

If you would like additional information concerning the studies and reports referenced in this document or have questions regarding the transportation planning process, please contact NIRCC staff at (260) 449-7309. NIRCC also maintains a website that contains many of the transportation planning documents and products at WWW.NIRCC.COM. The site also contains an amended Transportation Improvement Program (TIP), 2030 Transportation Plan, and many other documents and staff contact information.

Transportation Summary Report Fiscal Year 2006

Northeastern Indiana Regional Coordinating Council One East Main Street, City County Bldg. Room 630

Fort Wayne, IN 46802
Phone: 260-449-7309
Fax: 260-449-7682
Website: www.nircc.com

